Thesis on Oxidative Stress and "hypertension"

Paper title
Oxidative stress and endothelial dysfunction in hypertension
Abstract summary
Reactive oxygen species may directly alter vascular function or cause changes in vascular tone by several mechanisms during hypertension.
Authors
Eberhard Schulz, Tommaso Gori, Thomas Münzel
Journal
Hypertension Research
Semantic Scholar URL
https://semanticscholar.org/paper/425a677ed63d71069a9938186b77298fcb83011b
Abstract

Systemic arterial hypertension is a highly prevalent cardiovascular risk factor that causes significant morbidity and mortality, and is becoming an increasingly common health problem because of the increasing longevity and prevalence of predisposing factors such as sedentary lifestyle, obesity and nutritional habits. Further complicating the impact of this disease, mild and moderate hypertension are usually asymptomatic, and their presence (and the subsequent increase in cardiovascular risk) is often unrecognized. The pathophysiology of hypertension involves a complex interaction of multiple vascular effectors including the activation of the sympathetic nervous system, of the renin–angiotensin–aldosterone system and of the inflammatory mediators. Subsequent vasoconstriction and inflammation ensue, leading to vessel wall remodeling and, finally, to the formation of atherosclerotic lesions as the hallmark of advanced disease. Oxidative stress and endothelial dysfunction are consistently observed in hypertensive subjects, but emerging evidence suggests that they also have a causal role in the molecular processes leading to hypertension. Reactive oxygen species (ROS) may directly alter vascular function or cause changes in vascular tone by several mechanisms including altered nitric oxide (NO) bioavailability or signaling. ROS-producing enzymes involved in the increased vascular oxidative stress observed during hypertension include the NADPH oxidase, xanthine oxidase, the mitochondrial respiratory chain and an uncoupled endothelial NO synthase. In the current review, we will summarize our current understanding of the molecular mechanisms in the development of hypertension with an emphasis on oxidative stress and endothelial dysfunction.

TwendeeX
3tablets every day
for antioxidant
TwendeeX

Twendee X
100 tablets

US$ 49

MtControl
3tablets every day
for antioxidant and beauty
MtControl

Twendee MTCONTROL
100 tablets

US$ 62

SUPALIV
3tablets
After drinking
SUPALIV

SUPALIV
100 tablets

US$ 74

SUPALIV
3tablets
After drinking
SUPALIV

SUPALIV
3 tablets 5sets

US$ 16