Thesis on Oxidative Stress and "hypertension"

Paper title
Oxidative Stress in Hypertension
Abstract summary
Oxidative stress may constitute a major pathogenic factor in the development of hypertension and type 2 diabetes.
Authors
J. de Champlain, R. Wu, H. Girouard, M. Karas, A. El Midaoui, M. Laplante, Lingyun Wu
Journal
Clinical and experimental hypertension
Semantic Scholar URL
https://semanticscholar.org/paper/6dea71462e90911e35c6e94443bd5e21ff485899
Abstract

Several experimental and clinical evidences have linked an enhanced production of reactive oxygen species (ROS) to certain diseases of the cardiovascular system including hypertension and diabetes. However, it has never been clearly established whether the enhanced oxidative stress observed in those conditions is primary or secondary to the pathological process. Our experimental studies have permitted to demonstrate that ROS, mainly through the production of superoxide anion, can cause important alterations in the cellular signal transduction systems characterized by an enhanced production of inositol triphosphate and a reduced production of cyclic GMP in cultured vascular smooth muscle cells (SMC), thus favouring the vasoconstriction. Since those effects were found to be increased in SMC from spontaneously hypertensive rats (SHR), this suggested a greater sensitivity of the vascular tissue of SHR to the oxidative stress. Moreover, we also have observed an increased production of superoxide anion in the aorta of rats made hypertensive according to the SHR, glucose or angiotensin‐induced and DOCA‐salt models during the development of hypertension. Since the superoxide anion production could be correlated with the level of blood pressure and since the development of hypertension could be either totally prevented or markedly attenuated by chronic treatment with potent antioxidative therapies such as alpha lipoic acid or aspirin, this suggested a major contribution of vascular superoxide anion production in the development of hypertension in those models. Moreover, the development of insulin resistance, which is associated to the model of glucose‐induced hypertension, was also found to be prevented by chronic antioxidant therapies, thus suggesting that oxidative stress plays an important role as well in the development of insulin resistance and type 2 diabetes. In conclusion, it appears that oxidative stress may constitute a major pathogenic factor in the development of hypertension and type 2 diabetes. Moreover, our studies suggest that the chronic treatment with appropriate antioxidative therapies could prevent the development of hypertension and diabetes as well as their complications in various experimental models of hypertension.

TwendeeX
3tablets every day
for antioxidant
TwendeeX

Twendee X
100 tablets

US$ 49

MtControl
3tablets every day
for antioxidant and beauty
MtControl

Twendee MTCONTROL
100 tablets

US$ 62

SUPALIV
3tablets
After drinking
SUPALIV

SUPALIV
100 tablets

US$ 74

SUPALIV
3tablets
After drinking
SUPALIV

SUPALIV
3 tablets 5sets

US$ 16